

X-RAY APPLICATIONS

Hexagonal

Silicon Drift Detector (SDD)

The Hexagonal Silicon Drift Detector (SDD) is a spectroscopy subsystem sensitive to X-rays and low-energy gamma rays, primarily used for nuclear physics research focused on synchrotron radiation technology.

The X-PIPS[™] Detector is a suite of spectroscopy subsystem products sensitive to X-rays and low-energy gamma rays. The Mirion silicon drift detector uses proprietary PIPS[®] technology.

This X-PIPS Detector is comprised of a hermetically sealed hexagonal silicon drift detector element with a low noise CMOS and a Peltier cooler. It has an internal multilayer collimator for an improved peak-to-background ratio.

This product range is intended to be integrated in multielement arrays used mainly in synchrotrons. Mirion develops designs, manufactures and assembles everything in house, which has made Mirion the select partner for industrial clients.

FEATURES

- Hexagonal Silicon Drift Detector
- ✓ Be Window (25 µm)
- CMOS preamplifier
- ✓ Peltier cooler
- Easily customizable in a multielement configuration
- ✓ Faster measurements
- Excellent packing fraction with individual elements
- Simplified maintenance

PERFORMANCE

- ✓ Active Area: 75 mm²
- ✓ Collimated Active Area: 55 mm²
- ✓ Thickness: 0.5 mm
- ✓ Resolution <135 eV (FWHM)*
 </p>
- ✓ Energy Range: 1 to 30 keV

HEXAGONAL SILICON DRIFT DETECTOR

Model	Collimated Active Area (mm²)	Collimator	РТВ		Energy Resolution FWHM (eV)*	
					Typical	Max
			Typical	Max	@ Optimum Rise Time	
SXD55M-HEX-500-CM-T08	55	Multilayer	15000	>12000	128	135

^{*} Energy resolution is given at 5.9 keV (Mn-Ka), with an ambient temperature ranging from +10 °C to +30 °C, on a digital spectroscopy system with trapezoid shaping filter. Cooled to -50 °C.

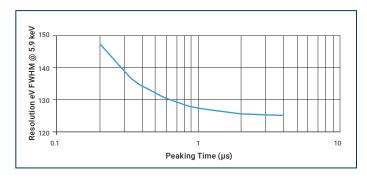


Figure 1: Typical resolution as a function of rise time at -50 $^{\circ}$ C.

Input count rate (Mcps)	Output count rate (Mcps)	Energy Resolution FWHM (eV)	
		Typical	
0.5	>0.45	145	
1	>0.9	175	

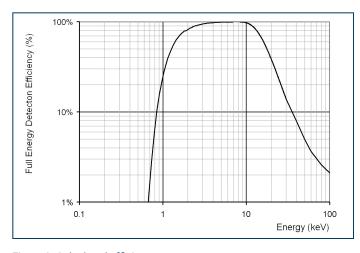


Figure 2: Calculated efficiency curve.

HEXAGONAL SILICON DRIFT DETECTOR

SPECIFICATIONS

SYSTEM REQUIREMENTS: DETECTOR BIAS

• HV/P+: -225 V 30 μA

· Ground: 0 V

• LV: -60 V 30 μA

CMOS PREAMPLIFIER

V_S: +2 V 1 mA

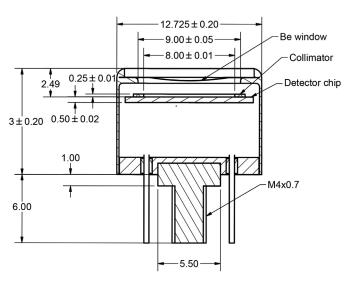
V_I/0: +3.3 V 1 mA

V_SSS: --4.5 V 1 mA

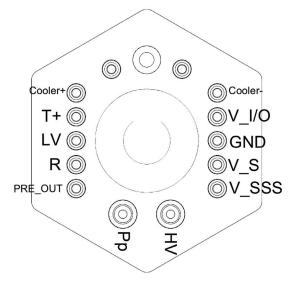
GND: 0 V 2 mA

• PRE_OUT: between 0.8 V and 3 V

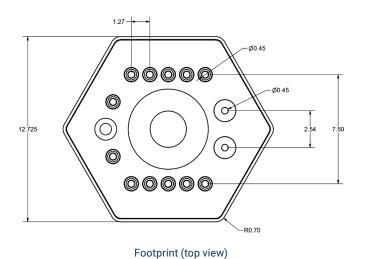
TEC


Max voltage: 5.7 VMax current: 0.7 A

TEMPERATURE SENSOR


• T+: 45 μA

• Slope: -2.227 mV/°C


V (0 °C): 629 mV

Detector geometry

Pin configuration (top view)

MIRION TECHNOLOGIES

Copyright © 2025 Mirion Technologies, Inc. or its affiliates. All rights reserved. Mirion, the Mirion logo, and other trade names of Mirion products listed herein are registered trademarks or trademarks of Mirion Technologies, Inc. or its affiliates in the United States and other countries. Third party trademarks mentioned are the property of their respective owners.

SPC-650-EN-B - 04/2025 MIRION.COM